Study of SOD1-mediated mechanism of glucose uptake into erythrocytes

Authors

  • I.V. Mykutska

Keywords:

human erythrocytes; superoxide dismutase; oxidative stress; casein kinases

Abstract

Superoxide dismutase is an enzyme that catalyzes the disproportionation of superoxide radicals to hydrogen peroxide and molecular oxygen. Using spectrophotometric and kinetic methods, we studied the change in SOD1 activity in human erythrocytes, which were incubated for five hours at 20 ° C in an oxidizing medium of the composition AscH – 1×10-4 М, Cu2+ – 5×10-6 М with different glucose content (from 0 up to 50 mM). Based on the experimental data obtained, it was assumed that, in the presence of glucose, SOD1 participates in the stabilization of two homologues of 1-gamma (CK1γ) casein kinase, Yck1p and Yck2p, which are required to suppress oxygen binding and enhance glycolysis. It was shown that the change in SOD1 activity occurs due to binding to the erythrocyte membrane and to the cytoplasmic degron Yck1p / Yck2p.

References

Agnieszka Grzelak, Marcin Kruszewski, Ewa Macierzyńska, Łukasz Piotrowski, Łukasz Pułaski, Błazej Rychlik, Grzegorz Bartosz. The effects of superoxide dismutase knockout on the oxidative stress parameters and survival of mouse erythrocytes. Cell Mol Biol Lett. 2009. № 14(1). Р. 23–34. doi:10.2478/s11658-008-0031-8.

Melo D., Rocha S., Coimbra S., Santos Silva A. Interplay between Erythrocyte Peroxidases and Membrane. In A. Tombak, (Ed.). Erythrocyte. IntechOpen, London, UK. 2019. Р. 65–84. doi.org/10.5772/intechopen.83590.

Junichi Fujii, Theingi Myint, Ayako Okado, Hideaki Kaneto and Naoyuki Taniguchi. Oxidative stress caused by glycation of Cu,Zn-superoxide dismutase and its effects on intracellular components. Nephrol Dial Transplant. 1996. № 11. Р. 34–40.

Chynna N. Broxton. SOD enzymes in a human fungal pathogen: oxidative stress protection versus cellular signaling. Doctoral Dissertations. 2017. 125 p. URI http://jhir.library.jhu.edu/handle/1774.2/44691

Jared R. Auclair, Joshua L. Johnson, Qian Liu,Joseph P. Salisbury,Melissa Rotunno,Gregory A. Petsko,Dagmar Ringe,Robert H. Brown, Jr,Daryl A. Bosco,and Jeffrey N. Agar.Post-Translational Modification by Cysteine Protects Cu/ZnSuperoxide Dismutase From Oxidative Damage. Biochemistry. 2013. № 52(36). Р. 6137–6144. doi: 10.1021/bi4006122

Claudia Montllor-Albalatea , Alyson E. Colina , Bindu Chandrasekharana , Naimah Bolajic , Joshua L. Andersend , F. Wayne Outtenc , Amit R. Reddia. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biology. 2019. № 21: 101064. Р. 1–10. doi: 10.1016/j.redox.2018.11.022

Sungmun Lee, Myung Chul Choi, Kenana Al Adem, Suryani Lukman, Tae-Yeon Kim. Aggregation and Cellular Toxicity of Pathogenic or Non-pathogenic Proteins. Sci Rep. 2020. № 10 (5120). Р. 3–14. DOI: 10.1038/s41598-020-62062-3

Sidorenko S. V., Ziganshin R. H., Luneva O. G., Deev L. I., Alekseeva N. V., Maksimov G. V., Orlov S. N. Proteomics-based identification of hypoxia-sensitive membrane-bound proteins in rat erythrocytes. Journal of Proteomics. 2018. 184. Р. 25–33. doi:10.1016/j.jprot.2018.06.008

Dorival Martins, Ann M. English.SOD1 oxidation and formation of soluble aggregates in yeast: Relevance to sporadic ALS development. Redox Biol. 2014. № 2. Р. 632–639. doi: 10.1016/j.redox.2014.03.005

Rosie K. A. Bunton-Stasyshyn1, Rachele A. Saccon1, Pietro Fratta1, and Elizabeth M. C. Fisher. SOD1 Function and Its Implications for Amyotrophic Lateral Sclerosis Pathology: New and Renascent Themes. The Neuroscientist. 2015. № 21(5). Р. 519–529. DOI: 10.1177/1073858414561795

Reddi A. R., Culotta V. C. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell. 2013. № 152(1–2). P. 224–235. doi.org/10.1016/j.cell.2012.11.046

Wang Y., Branicky R., Noë A., Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. The Journal of cell biology. 2018. 217(6). Р. 1915–1928. doi:10.1083/jcb.201708007

Wang C. C., Tao M., Wei T., Low P. S. Identification of the major casein kinase I phosphorylation sites on erythrocyte band 3. Blood. 1997. 89(8). P. 3019–3024. doi.org/10.1182/blood.V89.8.3019

Iakovenko I. N., Zhirnov V. V., Kozachenko A. P., Shablykin O. V., & Brovarets V. S. Participation of proteinkinase CK 2 in regulation of human erythrocytes plasma membrane redox system activity: relative contribution of Са2+- dependent and Са2+-independent mechanisms of its activation [Uchast' protei'nkinazy SK2 v reguljacii' aktyvnosti redoks-systemy plazmatychnyh membran erytrocytiv ljudyny: vidnosnyj vnesok Ca2+-zalezhnyh ta Ca2+- nezalezhnyh mehanizmiv i'i' aktyvacii']. The Ukrainian Biochemical Journal. 2012. 84(5). P. 55–60.

Grzelak A., Kruszewski M., Macierzyńska E., Piotrowski Ł., Pułaski Ł., Rychlik B., Bartosz G. The effects of superoxide dismutase knockout on the oxidative stress parameters and survival of mouse erythrocytes. Cellular & molecular biology letters. 2009. 14, №1. Р. 23–34. doi.org/10.2478/s11658-008-0031-8

Dotsenko O. I., Mykutska I. V., Taradina G. V., Boiarska Z. O. Potential role of cytoplasmic protein binding to eryth-rocyte membrane in counteracting oxidative and metabolic stress. Regulatory Mechanisms in Biosystems. 2020. 11(3). Р. 93–100. doi:10.15421/022071

Published

2021-05-07

Issue

Section

Природничі та технічні науки