Study of the state of hemoglobin in human erythrocytes in the conditions of oxidative stress of various intensity
Keywords:
membrane-bound hemoglobin; oxyhemoglobin; methemoglobin; hemichrome; hemoglobin absorption spectra; Sore bandAbstract
Oxidative stress was created by introducing hydrogen peroxide (concentration range 10-6 ‑ 0.1 M) into the erythrocyte incubation medium. The different concentrations effect of hydrogen peroxide to the content of membrane-bound hemoglobin, ligand forms of the cytoplasmic fraction hemoglobin and the composition of membrane-bound hemoglobin were studied by spectrophotometry and subsequent analysis of hemoglobin absorption spectra in the range of 350 - 650 nm. Quantitative changes of intracellular and extracellular hydrogen peroxide were tested. It is shown that hydrogen peroxide in the concentration range 5×10-3 to 0.1 M has a negative effect on the cell surface state, causing the rearrangement of the lipid bilayer. These processes result in the conversion of oxyhemoglobin to hemichrome and its irreversible binding to membrane lipids.
References
Космачевская О. В., Насыбуллина Э. И., Блиндарь В. Н., Топунов А. Ф. Связывание эритроцитарного гемоглобина с мембраной как способ осуществления сигнально-регуляторной функции (обзор). Прикладная биохимия и микробиология. 2019. Т. 55, № 2. С. 107–123.
Rifkind J. M., Nagababu E. Hemoglobin redox reactions and red blood cell aging. Antioxid. Redox Signal. 2013. Vol. 18. P. 2274–2283.
Mohanty J. G., Nagababu E., Rifkind J. M. Red blood cell oxidative stress impairs delivery and induces red blood cell aging. Frontiers in Physiology. 2014. Vol. 5. e84.
van Zwieten R., Verhoeven A. J., Roos D. Inborn defects in the antioxidant systems of human red blood cells. Free. Radic. Biol. Med. 2014. Vol. 67. P. 377–386.
Welbourn E. M., Wilson M. T., Yusof A., Metodiev M. V., Cooper C. E. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radical Biology and Medicine. 2017. 103. С. 95–106.
Carelli-Alinovi C., Misiti F. Erythrocytes as potential link between diabetes and Alzheimer’s disease. Frontiers in Aging Neuroscience. 2017. 9. 276.
Космачевская О. В., Топунов А. Ф. Альтернативные и дополнительные функции эритроцитарного гемоглобина. Обзор. Биохимия. 2019. Т. 84 (1). С. 3–23.
Tharaux P.-L. Posttranslational modifications of sickle hemoglobin in microparticles may promote injury. Kidney International. 2019. 95(6). C. 1289–1291.
Ratanasopa K., Strader M. B., Alayash A. I., Bulow L. Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Frontiers in physiology. 2015. 6. P. 39.
Attia A. M. M., Aboulthana W. M., Hassan G. M., Aboelezz E. Assessment of absorbed dose of gamma rays using the simultaneous determination of inactive hemoglobin derivatives as a biological dosimeter. Radiation and Environmental Biophysics. 2020. 59(1). C. 131–144.
Dotsenko O. I., Mykutska I. V., Taradina G. V., Boiarska Z. O. Potential role of cytoplasmic protein binding to erythrocyte membrane in counteracting oxidative and metabolic stress. Regulatory Mechanisms in Biosystems. 2020. 11(3). С. 455–462.
Wolff S. P. [18] Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Oxygen Radicals in Biological Systems Part C. 1994. С. 182–189.
Bou R., Codony R., Tres A., Decker E. A., Guardiola F. Determination of hydroperoxides in foods and biological samples by the ferrous oxidation–xylenol orange method: A review of the factors that influence the method’s performance. Analytical Biochemistry. 2008. 377(1). С. 1–15.
Андреюк Г. М., Кисель М. А. Превращение гемоглобина в гемихром под действием лизофосфолипидов. Биохимия. 1999. Т. 64, 8. С. 1034–1042.
Matveev V. V. Cell theory, intrinsically disordered proteins, and the physics of the origin of life. Progress in Biophysics and Molecular Biology. 2019. 149. Р. 114–130.