Studies Іn Silico features of functioning and structure of the erythrocytic metabolic network in combination with the methionine cycle
Keywords:
erythrocytes; methionine; homocysteine; model; SAMAbstract
This study provides information about biochemical processes in the mature erythrocyte. The aim of the work was to develop a mathematical metabolic model of erythrocytes, which would include little-studied metabolic pathways: homocysteine, methionine, folate, while fully taking into account all known features of the biochemical composition of erythrocytes. The developed metabolic mathematical model consists of three cycles: the cycle of adenine nucleotide metabolism, the cycle of glutathione synthesis and the cycle of methionine based on exact kinetic equations in the COPASI program. The effect of methionine and oxidative stress on the distribution of metabolic flows in erythrocytes was studied using simulations.
References
Wijk R., Solinge W. W. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood. 2005. №106(13). Р. 4034–4042.
Bakhtiari N., Hosseinkhani S., Larijani B., Mohajeri-Tehrani M. R., Fallah A. Red blood cell ATP/ADP & nitric oxide: The best vasodilators in diabetic patients. Journal of diabetes and metabolic disorders. 2012. №11(1). Р. 9.
Franco R., Navarro G., & Martínez-Pinilla E. Antioxidant Defense Mechanisms in Erythrocytes and in the Central Nervous System. Antioxidants (Basel, Switzerland). 2019. №8(2). Р.46.
Ku Youn Baik, Yoon Ho Huh, Yong Hee Kim, Jeongho Kim, Min Su Kim, Hun-Kuk Park, Eun Ha Choi, Byoungchoo Park, The Role of Free Radicals in Hemolytic Toxicity Induced by Atmospheric-Pressure Plasma Jet. Oxidative Medicine and Cellular Longevity. vol. 2017. Р.11. Article ID 1289041.
Schuster S., Kenanov D. Adenine and adenosine salvage pathways in erythrocytes and the role of S-adenosylhomocysteine hydrolase A theoretical study using elementary flux modes. FEBS Journal. 2005. № 272. Р. 5278–5290.
Kinoshita A., Tsukada K., Soga T., Hishiki T., Ueno Y., Nakayama Y., Tomita M., Suematsu M. Roles of hemoglobin Allostery in hypoxia-induced metabolic alterations in erythrocytes: simulation and its verification by metabolome analysis. J Biol Chem. 2007. №282, (14). P.10731–10741.
Joshi A, Palsson B. O. Metabolic dynamics in the human red cell. Part III--Metabolic reaction rates. J Theor Biol. 1990. № 142(1). Р.41–68.
Ataullakhanov F. I. A possible role of adenylate metabolism in human erythrocytes: Simple mathematical model. F. I. Ataullakhanov, S. V. Komarova, V. M. Vitvitsky. J. Theor. Biol. 1996. № 179. P. 75–86.
Ataullakhanov F. I., Komarova S. V., Martinov M. V., Vitvitsky V. M. A possible role of adenylate metabolism in human erythrocytes. 2. Adenylate metabolism is able to improve the erythrocyte volume stabilization. J. Theor. Biol. 1996. № 183. P. 307–316.
Raftos J. E., Whillier S., Kuchel P. W. Glutathione synthesis and turnover in the human erythrocyte: alignment of a model based on detailed enzyme kinetics with experimental data. The Journal of biological chemistry. 2010. № 285(31). Р. 23557–23567.
Ng C. F, Schafer F. Q., Buettner G. R., Rodgers V. G. The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical insight into in vivo H2O2 and GPx concentrations. Free Radical Research. 2007. № 41(11). P.1201–1211.
Holzhütter H. G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 2004. № 271. P. 2905–2922. 13. Mendes P., Hoops S., Sahle S., Gauges R., Dada J., Kummer U. Computational modeling of biochemical networks using COPASI. Methods in Molecular Biology, Systems Biology. 2009. № 500. P. 17–59.
Reed M. C., Thomas R. L., Pavisic J., James S. J., Ulrich C. M., Nijhout H. F. A mathematical model of glutathione metabolism. Theoretical biology & medical modelling. 2008. Р. 5–8.
Ekegren T., Askmark H., Aquilonius S.M., Gomes-Trolin C. Methionine adenosyltransferase activity in erythrocytes and spinal cord of patients with sporadic amyotrophic lateral sclerosis. Exp Neurol. 1999. № 158(2). Р. 422 – 7.
Seneviratne C. K., Li T., Khaper N., Singal P. K. Effects of methionine on endogenous antioxidants in the heart. Am J Physiol. 1999. №277(6). Р. 2124.