Analysis of the use of algebra in information protection

Authors

  • А. І. Rodiuk Донецький національний університет імені Василя Стуса

Keywords:

algebra, quasigroup, cryptography, encryption, decryption

Abstract

This article discusses the mathematical foundations of cryptography. The application of basic concepts of number theory such as the properties of primes and the difficulty of factorizing large numbers in RSA encryption. How algebraic structures such as groups, rings, and fields are used to build various cryptographic schemes, such as key exchange protocols. Use of non-associative algebraic systems – quasigroups in encryption. Polynomials in the construction of secret distribution schemes. As well as hash functions and hashing, which are an integral part of many data protection algorithms.

References

Diffie W., Hellman M. E. New directions in cryptography. IEEE Transactions on Information Theory. 1976. Vol. 22(6). P. 644–654.

Rivest R. L., Shamir A., Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM. 1978. Vol. 21(2). P. 120–126.

Brassard G. Modern Cryptology, Lecture Notes in Computer Science 325, Berlin: Springer Verlag, 1988.

Smid M. E., Branstad D. K. The date encryption standard: past and future. Contemporary Cryptology, The science of Information Integrity. Piscataway: IEEE Press, 1992. P. 43–64.

D’enes J., Keedwell A. D. Some applications of non-associative algebraic systems in cryptology. Pure Mathematics and Applications. 2001. Vol. 12(2). P. 147–195.

Shcherbacov V. On some known possible applications of quasigroups in cryptology: manuscript, 2003.

Markovski S., Gligoroski D., Andova S. Using quasigroups for one-one secure encoding. Proceedings of VIIIth Conference for Logic and Computing – LIRA’97. September 1997, Novi Sad, 1997.

Markovski S., Gligoroski D., Bakeva V. Quasigroup String Processing: Part 1, Maced. Acad. of Sci. and Arts, Sc. Math. Tech. Scien. XX 1–2, 1999.

Gligoroski D., Markovski S. Cryptographic Potentials of Quasigroup Transformations, manuscript, 2003.

Mileva A. Cryptographic Primitives with Quasigroup Transformations: Ph.D. dissertation, University Ss. Cyril and Methodius, Skopje, Macedonia, 2010.

Published

2024-12-31

Issue

Section

Природничі та технічні науки